FICHE-MÉTHODE : OSCILLOSCOPES

1) Réglages de l'oscilloscope :

- <u>Repérer sur l'oscilloscope</u> les « boutons » permettant de faire les réglages essentiels (voir ci-dessus, à droite de l'oscillogramme) : base de temps, sensibilité verticale, sélecteur (couplage) + déplacement du signal et atténuation ;
- <u>« Faire le zéro »</u> en mettant le sélecteur sur GND puis en réglant la trace au milieu de l'écran (puis remettre le sélecteur sur DC pour visualiser le signal) ;

- Régler la base de temps et la sensibilité verticale pour avoir un affichage correct du signal à l'écran.

2) Détermination de la période : <u>!!! EXEMPLE !!!</u>

- On repère un motif élémentaire : il fait ici « 4,6 carreaux de long » (4,6 DIV, voir écran reproduit dans l'exemple)

ATTENTION, 5 « petites graduations » par carreau

→ UNE « petite graduation » représente 0,2 carreaux (0,2 DIV)!

- On utilise la base de temps : 2 ms/div veut dire que chaque carreau représente 2 ms dans la direction horizontale.

- Par proportionnalité, on en déduit que **la période vaut 7 = 4,6 × 2,0 = 9,2 ms**

<u>Remarque</u> : la **sonde différentielle (sonde atténuatrice)** n'a **AUCUN effet** sur le temps : ne pas appliquer le facteur d'atténuation sur la période !

3) Détermination d'une valeur de tension (valeur Umax ici) : !!! EXEMPLE !!!

- Le milieu de l'écran représente la valeur zéro volts (si le zéro a été fait) : on compte, donc, verticalement, les carreaux entre la ligne du milieu de l'écran et la valeur qu'on veut mesurer : 3,0 carreaux ici (voir écran reproduit dans l'exemple).

- On utilise la sensibilité verticale : 5 V/div veut dire que chaque carreau représente 5 V dans la direction verticale.
Donc Umax = 3,0 × 5,0 = 15 V

- Si la sonde différentielle (sonde atténuatrice) a été utilisée, ne pas oublier de multiplier le résultat précédent par le facteur d'atténuation ! (exemple : si on était passé par une sonde 1/10, on aurait en réalité Umax = 15 V x 10 = 150 V)

OSCILLOSCOPE NUMÉRIQUE (MODÈLE F.I. 38102 OS)

1) Réglages de l'oscilloscope :

- Comme avec l'oscilloscope analogique, **repérer sur l'oscilloscope les « boutons »** permettant de faire les réglages essentiels (voir ci-dessus) ;

Appuyer sur le bouton d'affichage de la voie CH1 (ou CH2) et vérifier les réglages par défaut dans le menu contextuel : couplage (AC/DC/GND), prise en compte ou non d'une sonde atténuatrice (« probe x 1 » → pas de sonde), unité, ... (A priori, le couplage doit être réglé sur DC, l'atténuation sur probe x 1 (pas de sonde externe) et l'unité sur Volts (sauf si utilisation d'une sonde de courant) ;

- Sur un oscilloscope numérique, **pas besoin de « faire le zéro** » : un **symbole sur l'écran indique le niveau du « 0 V»** (voir photo de l'écran) ;

- Pour voire apparaître le signal à la « bonne » échelle, appuyer sur « Auto Setup » puis affiner le réglage en modifiant la base de temps, la sensibilité verticale et en déplaçant verticalement la courbe.

2) Détermination d'une durée (période par exemple) ou d'une valeur de tension :

- Vous pouvez procéder **comme avec l'oscilloscope analogiqu**e, en comptant les carreaux et en utilisant la sensibilité verticale et la base de temps (valeurs affichées à l'écran, voire photo) ;

- Une lecture plus précise, et plus pratique, peut être réalisée en utilisant les curseurs (réticules) : appuyer sur le bouton « Cursors », puis sélectionner la source et le type de curseur voulu via le menu contextuel (touches sous l'écran). Appuyer ensuite sur le bouton « accès/réglages du menu contextuel » pour passer d'un curseur à l'autre (ou utiliser les touches de menu contextuel, sous l 'écran) et déplacer le curseur actif sur l'écran en tournant ce même bouton. L'affichage des valeurs apparaît dasn une denêtre sur l'écran

