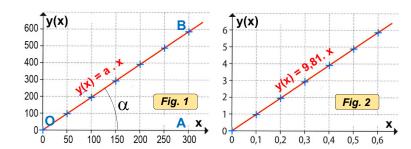


Unités S.I.: J, W, m, kg, s, N

Loi / Fonction linéaire

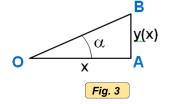
Une loi linéaire est une relation entre deux grandeurs proportionnelles.

Une grandeur (y) est donc proportionnelle à l'autre (x) ainsi qu'à un facteur de proportionnalité (a).


Une grandeur étant fonction de l'autre, on peut représenter cette relation (et donc cette fonction) graphiquement. Si y est proportionnelle à x, la fonction est linéaire (droite passant par l'origine) et s'écrit : y(x) = a. x

Déterminer fig. 1 :

- y(50) ≈ ____
- y(300) ≈
- a≈
- pour y(x) = 590:
 - Lire x sur la courbe : x = ____
 - o calculer x =



- y(0,1) ≈ ____
- y(0,6) ≈ ____
- a =
- pour y(x) = 3.9:
 - Lire x sur la courbe : x = ____
 - o calculer x = ____

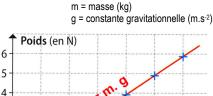
- a = constante
- a est le coefficient de proportionnalité
- a est le coefficient directeur de la droite y(x)

Déterminer fig. 3 (ou fig.1):

 $\tan \alpha =$ _____ Conclusion :

Poids et masse

Le poids en Newton d'un corps est proportionnel à sa masse en kg et à l'accélération de la pesanteur en m.s⁻².


Déterminer :

- P(0,5) ≈ _____
- y(0,5) ≈
- g≈_
- pour P(m) = 6 :
 - Lire m sur la courbe : m =
 - calculer m = _____

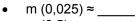
0

Tracer (fig. 4) la fonction correspondant à la gravité lunaire g_L ≈ 1,64 m.s²

Quel est le poids d'une masse de 100 kg sur la lune ?

P = Poids (N)

 $P = m \cdot g$


4 3 Pim m. Fig. 4

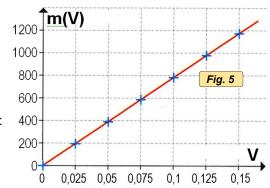
1 Masse (en kg)
0 0,1 0,2 0,3 0,4 0,5 0,6

Masse et volume

La masse d'un corps est proportionnelle à son volume en m³ et sa masse volumique en kg.m⁻³.

Déterminer (préciser les unités) :

- m (0,5) ≈ ____
- ρ≈ ____ De quel materiau s'agit-il ?
- pour m(V) = 600 :
 - Lire V sur la courbe : V = ____
 - o calculer V =


0

Tracer (fig. 5) la fonction correspondant à la masse volumique de l'aluminium :

 $\rho_{alu} \approx 2700 \text{ kg.m}^{-3}$

 $m = masse (kg) \\ \rho = masse volumique (kg.m-3) \\ V = volume (m³)$

En travaux...

Distance et Vitesse

La vitesse (linéaire et moyenne) d'un objet est proportionnelle la distance parcourue et inversement proportionnelle à la durée du parcours.

Vitesse moyenne : La vitesse moyenne se détermine par : $\underline{v} = d / t$ soit, suivant les phases étudiées : $\underline{v} = \frac{x(t) - x_0}{t - t_0}$ Service = $\frac{x(t) - x_0}{t - t_0}$

En marche avant, phases 1 à 5 : $\underline{v_{mov}} = [x(15) - x(0)] / [15 - 0] = 348/15 = 23.2 \underline{m.s.^1}$ En marche arrière, phases 7 à 9 : $\underline{v_{mov}} = [x(26) - x(19)] / [26 - 19] = [260-348] / 7 = -12.57 \underline{m.s.^1}$

On notera que $\overline{y_i}$ $t_i = x_i$ aire sous la courbe. Ex: phase $1 \Rightarrow 12 \times 3 = 24 \times 3/2$

V = d/t

V = vitesse (m.s⁻¹)

d = distance (m)

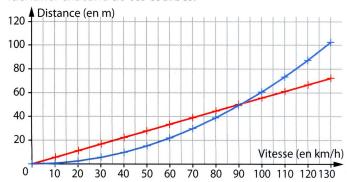
t = temps (s)

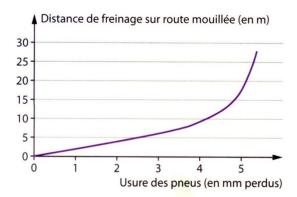
Distance de freinage et Vitesse

La vitesse (linéaire et moyenne) d'un objet est proportionnelle la distance parcourue et inversement proportionnelle à la durée du parcours.

$d = V^2/2.g.f$

d = distance de freinage (m)

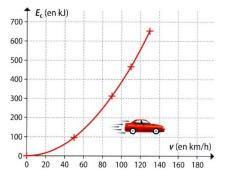

V = vitesse (m.s⁻¹)

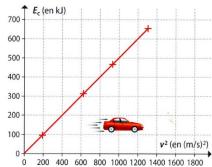

g = constante de gravité (m.s-2) f = coefficient d'adhérence

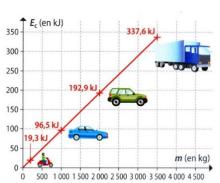
• La distance d'arrêt est la somme de la distance parcourue pendant le temps de réaction et de la distance de freinage :

$$D_{\mathsf{A}} = D_{\mathsf{R}} + D_{\mathsf{F}}$$
.

1. Les deux courbes ci-dessous représentent la distance de réaction D_R et la distance de freinage D_F en fonction de la vitesse, pour la voiture de Muriel sur une route sèche en bon état. Identifier chacune de ces courbes.


Eneraie cinétique et Vitesse


L'énergie cinétique d'un objet est proportionnelle à sa masse et au carré de sa vitesse.



E = L'énergie cinétique (J) m = masse (kg)

V = vitesse (m.s⁻¹)

